
Shear instability in cold water

The three dimensional state of stratified shear instability in cold water
M. Stastna,1 K. Bhavsar,1 S. Hartharn-Evans,2 and N. Castro-Folker1

1)Department of Applied Mathematics, University of Waterloo
2)Department of Geography and Environmental Sciences, Northumbria University

(*Electronic mail: mmstastn@uwaterloo.ca)

(Dated: 28 March 2025)

Stratified shear instability is one of the most widely studied routes to turbulence that occurs in natural waters. We report

on simulations in the cold water regime relevant to late winter/early spring lakes, which is characterized by very small

density differences and a nonlinear equation of state. The stratified shear instability in this regime achieves a three-

dimensional state but it is not a priori clear that a substantial inertial subrange exists. We quantify the manner in which

the three–dimensional state dissipates momentum and mixes scalars, and report on the nature of coherent structures in

the flow with a focus on late times.

I. INTRODUCTION

The majority of natural waters are density stratified over at

least some portion of the calendar year. The primary forc-

ing of such waters can be mechanical (e.g. by the wind) or

buoyancy-related (e.g. by solar radiation). In the late win-

ter/early spring many mid and high latitude lakes are ice cov-

ered, meaning that mechanical forcing by the wind is pre-

cluded. Such lakes are also often observed to have an inverse

stratification, with cold water overlying warmer water. This

is possible due to the nonlinear nature of the equation of state

for freshwater, which predicts a maximum density near a tem-

perature of four degrees Centigrade. Since the increasing so-

lar radiation associated with the coming Spring can at least

partially penetrate through the ice cover, convective instabil-

ity can be induced by warming. For example, well–developed

overturns were observed under ice in Lake Simcoe, Canada by

Yang et al 1. Since the overlying ice cover is spatially varying,

a number of scenarios have been identified and simulated for

buoyancy–induced lateral motions in such lakes (2,3). Large

eddy simulations of the larger scale organization of radiatively

driven convection in such lakes have also been carried out in

(4).

All the simulations described above focus on situations

in which many features evolve simultaneously. A different

point of view follows the stratified shear instability litera-

ture (e.g.5) by considering a single transition route to turbu-

lence in detail. It is well-known that stratified shear insta-

bilities form a primary instability, the well-known Kelvin–

Helmholtz billow (6), and that this is followed by a secondary

instability (7,8) that subsequently leads to a breakdown to a

three–dimensionalized state. In what is now classical work,

Caulfield and Peltier5 showed that the rate of mixing greatly

increases during the three–dimensionalization of the instabil-

ity. In the subsequent decades, computational fluid dynami-

cists have largely sought to increase the Reynolds number of

the shear flow simulated (e.g.9) with a view to answering ques-

tion of whether there is a universal value of mixing efficiency

in natural waters (10,11).

The largely quiet world of under ice flow in lakes offers

an alternative portion of parameter space to explore. Since

the ice precludes the primary input of mechanical energy via

wind, the challenge is no longer reaching a high Reynolds

number. Moreover, buoyancy driven motions are expected

to also be relatively slow, since the maximum density dif-

ference is bounded above by ∆ρ ≈ 0.1 kg m−3. Instead,

what is important is the realistic modeling of what is a non-

linear, and possibly non-monotonic density versus tempera-

ture curve. The case of so–called strong cabbeling, in which

temperatures both above and below the temperature of maxi-

mum density are observed has been documented in lakes for

decades (12,13). From a theoretical/numerical point of view,

the problem was considered by Hanson et al 14, who showed

that the instability was a hybrid of shear instability in the

plane of shear, and Rayleigh Taylor instability in the plane

perpendicular to the shear. In other words the onset of insta-

bility is three-dimensional and two-dimensional simulations,

even when carefully analyzed15, need to be taken with a grain

of salt. The work of Hanson et al was extended in Grace

et al 16 to a deeper domain, a broader parameter regime and

a longer integration time. It was found that after a period

of strong mixing, a quasi-stable state in which a low-energy

three-dimensional flow lies underneath a quiescent layer is

achieved. This implies that any mixing of material from the

lake bottom, could not reach the near surface region where it

could, for example, provide nutrients for under–ice algae.

As impressive as strong cabbeling is, the nonlinearity of the

equation of state has significant dynamical effects even if the

fluid is strictly below the temperature of maximum density (as

would be the case during the so–called winter 1 period17). For

example, Castro-Folker et al 18 showed that the nonlinearity

of the equation of state yields fundamental differences in the

manifestation of lobe cleft instabilities for rising and sinking

gravity currents.

We thus consider the instability of shear flow in a fluid

strictly below the temperature of maximum density. In a

laboratory setting it is the temperature that would be speci-

fied, hence we choose to specify a temperature profile along

with a shear profile. The instability onset and the question of

what role the small density differences have in it has been ad-

dressed in a companion publication (19). This has primarily

been done through comparing temperature profiles and evolu-

tion of kinetic energy leading up to the development of three-

dimensional flow. Herein we seek to characterize the three-

dimensionalized state of the instability using tools often asso-

ciated with turbulence theory (e.g. the Q−R variables). We
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Shear instability in cold water 2

do this because despite reaching a fully three-dimensionalized

state, the mature state of the instability never achieves a well–

developed inertial subrange (e.g. there is no range of scales

for which dissipation is negligible). Moreover, there has been

the suggestion in the literature20 that upon reaching matu-

rity a stratified shear instability returns to what is referred to

as the state of marginal stability, characterized by a gradient

Richardson number near 0.25. Whether this is the Richardson

number for horizontally averaged flow, or something more lo-

cal is an open question. Recent work on stratified wakes21

suggests it is possible to define a “local" Richardson number

based on a filtering procedure and to characterize threshold

behavior in the flow based on it. Moreover, this works sug-

gests that marginal stability may be more generic than any

particular route to three-dimensionalizing.

The remainder of this manuscript is organized as follows.

First the governing equations, numerical methods, and derived

quantities used for analysis are defined. Next the general flow

evolution as the fully three-dimensionalized flow is achieved

is described. This is followed by a detailed discussion of the

Q− R variables. The results conclude with a discussion of

how the quasi-turbulent state is maintained at late times. The

manuscript concludes with a Discussion section.

II. METHODS

A. Governing equations

The simulations reported on in the following were per-

formed using the pseudo-spectral collocation method solver

for the stratified, incompressible Navier-Stokes equations

SPINS22. The Boussinesq approximation is used throughout,

and the governing equations are given by Kundu6:

Du⃗

Dt
=

−1

ρ0
∇p− ρ ′(T )

ρ0
gk̂+ν∇

2u⃗, (1)

∇ · u⃗ = 0, (2)

DT

Dt
= κ∇

2T, (3)

where u⃗ = (u,v,w) is the velocity, p denotes the pressure field,

ρ0 is a reference density (1000 kg m−3), ρ ′ denotes the den-

sity perturbation around the reference value (i.e. ρ(x,y,z, t) =
ρ0+ρ ′(x,y,z, t)), ν and κ are the kinematic viscosity of water,

and thermal diffusivity, respectively, g is the gravitational ac-

celeration, t is time, and T denotes the temperature field. The

unit vector in the vertical direction is denoted by k̂. The origin

is located at the bottom left of the numerical tank, with the

x-axis pointing streamwise, the z-axis pointing upwards and

the spanwise y-axis determined via the right-hand rule. The

values of the constants used in these governing equations are

given in table I.

While the results are insensitive to the precise form of the

equation of state used (e.g. a quadratic equation of state), sim-

ulations are reported using the form in Brydon et al.23. This

equation is a seven-term polynomial that is cubic in tempera-

ture and linear in salinity (though the salinity is fixed as zero

in all simulations reported herein). The temperatures of wa-

ter are kept between T0 = 0◦C and Tmax = 3.5◦C (which is the

shifted temperature of maximum density) so as to stay within

the monotonic branch of the equation of state. Work on the

onset of instability and the sensitivity of such an instability to

the various parameters is reported in the companion paper19.

B. Dimensionless parameters

The numerical simulations are performed using dimen-

sional equations at the laboratory scale. In order to provide

a non-dimensional context, we will consider the height of

the tank, H (in meters), to be the characteristic length scale,

L. The characteristic velocity scale, U , will be given by the

maximum initial horizontal velocity, u0. Time is scaled by

the advective time scale L/U . Finally, the temperature is

scaled to values between -1 and 0 using the following non-

dimensionalization,

T̃ =
T −Tmax

Tmax −T0
. (4)

Scaling the governing equations by these parameters, leads

to a form in terms of standard dimensionless parameters:

Reynolds number (Re), Péclet number (Pe) and Froude num-

ber (Fr),

∇⃗ · u⃗ = 0, (5)

Du⃗

Dt
=−∇⃗p+

1

Re
∇

2u⃗− 1

Fr2
R(T )k̂, (6)

DT

Dt
=

1

Pe
∇

2T. (7)

Here, R(T ) is the nondimensionalized equation of state14 and

the tildes have been dropped. Tildes will also be dropped in

all figures below.

The Atwood Number is given by:

At =
ρmax −ρmin

ρmax +ρmin

= 3.29×10−5, (8)

and the representative values of the other dimensionless num-

bers are,

Re =
UL

ν
≈ 1000, (9)

Pe =
UL

κ
≈ 10000, (10)

Fr =
U√
gL

≈ 0.01. (11)

Note that the Froude number as written is small due to the use

of g. This is the result of defining the Froude number as a
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Shear instability in cold water 3

g ρ0 ν κ u0

(ms−2) (kg m−3) (m2s−1) (m2s−1) (ms−1)

9.81 1000 10−6 1.43×10−7 0.01

TABLE I. Parameters for the governing equations

direct ratio of terms in the governing equations. If we instead

use the reduced gravity, g′ = g∆ρ/ρ0, we find

Frinternal =
U√
g′L

≈ 100 (12)

and that the flow is strongly supercritical (due to the very weak

stratification).

C. Design of Numerical Experiments

The numerical tank employed has dimensions Lx =
0.512 m, Ly = 0.128 m and Lz = 0.128 m. The number of grid

points in each dimension is Nx = 512, Ny = 128, Nz = 128,

which results in a 1 mm resolution in all directions. Although

the flow reaches a three-dimensionalized state, it is unclear

whether estimates of the viscous dissipation scale based on

isotropic, homogeneous turbulence are relevant. We thus pre-

fer to set the resolution based on a physical scale. Details of

the mature distribution of dissipation are discussed in the re-

sults section below. Free slip boundary conditions were ap-

plied at the upper and lower boundaries, with regular grid

spacing in all dimensions and periodic boundary conditions

in the x and y directions.

The temperature profile profile is initialized as

T = T0 +
1

2
∆T

(

1− tanh

(

z− zcenter

Ltemp

))

. (13)

while the initial horizontal velocity profile (u) is initialized as,

u = u0 tanh

(

z− zcenter

Lshear

)

. (14)

Here Lshear is the thickness of the shear layer and Ltemp is

the thickness of the stratified layer. For the experiments per-

formed in this paper, we take Lshear = Ltemp = 0.01m, and

zcenter = 0.064m is the midpoint of the shear layer as well as

the stratified layer. The type of instability developed in a strat-

ified shear flow depends on the scale ratio24 R = Lshear/Ltemp,

which in this case is 1. The resulting instability is thus ex-

pected to be of Kelvin-Helmholtz type, as opposed to Holm-

boe type. The simulation is initialized with a standard additive

white noise component at a level of 10−3 in order to trigger an

instability.

The nondimensional initial profiles are indicated by the

blue curves in Figure 1. The velocity curve has been shifted

so it is centered at −0.5 in order to use a common set of axes

in the three panels. The bulk Richardson Number for these

initial profiles is J = (∆ρgLshear)/(ρ0(2u0)
2)≈ 0.016.

D. Derived Quantities

Following standard practice in fluid mechanics (6), the ki-

netic energy is defined without the factor ρ0,

KE(x,y,z, t) =
1

2
(u2 + v2 +w2). (15)

We define the vector u⃗3D as the velocity vector with the

spanwise average removed,

u⃗3D = u⃗−⟨⃗u⟩y = (u3D,v3D,w3D), (16)

and use this to further define the 3D kinetic energy as dis-

cussed widely in the literature, e.g.25,

KE3D(x,y,z, t) =
1

2
(u2

3D + v2
3D +w2

3D). (17)

The enstrophy, split into components is written using the vor-

ticity

ω⃗ = (ωx,ωy,ωz) = ∇× u⃗ (18)

as follows

Ω = Ωx +Ωy +Ωz =
1

2

(

ω2
x +ω2

y +ω2
z

)

. (19)

The evolution of vorticity is given by (Ref.6)

Dω⃗

Dt
= (−ρyg,ρx,g,0)+ ω⃗ ·∇u⃗+ν∇

2ω⃗. (20)

The term ω⃗ · ∇u⃗ is only non-zero in three-dimensions and

represents the ability of the flow to spontaneously gener-

ate vorticity via vortex stretching and tilting. The term

(−ρyg,ρx,g,0) is the baroclinic vorticity production, in its

simplified form appropriate for the Boussinesq approxima-

tion. The governing equation for the enstrophy, Ω = (1/2)ω⃗ ·
ω⃗ , can be written using index notation:

DΩ

Dt
=−ωkεi jkρ,ig j

+ωiω jei j

−νεi jkωi, jεi jkωi, j

+ν
(

εi jkω j[εmnkωm,n]ωk

)

,i
(21)

where εi jk is the alternating tensor. The two terms of interest

in the discussion presented below are

ES = ωiω jei j, (22)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
6
8
3
0
2



Shear instability in cold water 4

which represents the production and destruction of enstrophy

by stretching and compression, and

EB =−ωkεi jkρ,ig j, (23)

which represents the production and destruction of enstrophy

by baroclinic torques.

The viscous dissipation, which defines the irreversible

transfer of mechanical energy into heat is defined as

φ = 2µei jei j (24)

where µ = νρ0 is the dynamic viscosity, and ei j is the rate

of strain tensor. The repeated indices imply that the viscous

dissipation is proportional to the double contraction of the rate

of strain tensor with itself. The viscous dissipation is assumed

to be high in regions with significant three-dimensionalization

or transition to a three-dimensionalized state.

The third set of derived quantities of interest consists of

tools developed to identify regions with coherent vortices26,27.

The computation follows a three step process. First the veloc-

ity gradient matrix is computed as

Ai j =
∂ui

∂x j

.

Second, its eigenvalues (λ1,λ2,λ3) are computed. Third, the

coefficients of the cubic characteristic polynomial, which are

necessarily invariant, are derived from the following relations:

P = λ1 +λ2 +λ3 = trace(Ai j) (25)

Q =−1

2

(

λ 2
1 +λ 2

2 +λ 2
3

)

=
1

2
(Ω− ei jei j)

R =
1

3
(λ1λ2λ3) = det(Ai j) ,

where λ1, λ2, and λ3 are the roots of the characteristic poly-

nomial, Ω is the enstrophy, and ei j is the rate of strain

tensor26–28. Because trace(Ai j) = ∇ · u⃗, the incompressibility

condition implies P = 0.

Notice that when Q is expressed in terms of ei j and Ω,

it represents a balance between strain and rotation. That is

to say, the flow is enstrophy-dominated when Q is large-

amplitude and positive, and the flow is strain-dominated when

Q is large-amplitude and negative.

R can be used with Q to classify flow topology. To be

precise, Chong et al.28 derived a topological transition curve

that delineates the R-Q plane into regions where enstrophy

or strain dominate in incompressible flows. This topological

transition curve is defined as the set of points where the quan-

tity,

D = Q3 +
27

4
R2, (26)

takes a value of zero. Points where D > 0 are said to be

enstrophy-dominated, and points where D < 0 are said to be

strain-dominated. This categorization is motivated by the rela-

tionship between the eigenvalues of Ai j and the local structure

of streamlines. Namely, D > 0 at a point results in Ai j having

all real eigenvalues, and D < 0 results in Ai j having a pair of

complex eigenvalues. The significance of this criterion is that

two complex eigenvalues at a point implies the streamlines to

possess locally helical structure26–28.

FIG. 1. The domain horizontally averaged profiles scaled to lie on

[−1,0] at τ = 0 (blue), 19.53 (red) and 27.34 (black) of (a) tempera-

ture, (b) ρ ′ = ρ −ρ0 (c) streamwise component of velocity (u).

III. RESULTS

A. General Flow Evolution

While the focus in the following will be on the detailed dy-

namics, it is important to keep in mind that the bulk effect of

the instability is to mix both the passive and active scalars as

well as the momentum. The vertical momentum profile (right-

most panel in Figure 1) reaches a broad state, which to lead-

ing order could be considered linear in z. Both the temperature

and excess density profiles (left and middle panels in Figure 1,

respectively) maintain a transition region structure. However,

the center of this transition region shifts upward. The weakest

mixing of density occurs near the top of the domain.

The manner in which the system reaches the averaged

state shown in Figure 1 follows a relatively standard Kelvin-

Helmholtz paradigm. Figure 2 shows the temperature field

as the instability sets in (panel (a)), billows pair (panels (b)

and (c)) and true three-dimensionalization begins to set in

(panel (d)). The three-dimensionalization of the flow is ini-

tially small but prominent in both the billow cores and the

braids connecting them at τ ≈ 8. After pairing has occurred,

the three-dimensionalization grows within the paired billow

core and develops into a fully 3D flow at τ ≈ 18. Figure 3

shows three x-y slices at the locations indicated by blue lines

in the x-z plot shown in panel (a). It is clear that the intensity of

three-dimensionalization varies in the spanwise direction. For

further discussion of the onset of three-dimensionalization see

Bhavsar, Stastna, and Castro-Folker 19 .

Due to the extremely small value of the Atwood number

the three dimensionalization process is best quantified using

the changes in the kinetic energy and its counterpart that re-

moves the spanwise average, KE3D. Figure 4(a) shows the

decay in total kinetic energy (black curve) and the increase

in KE3D (red curve) from about τ = 15 onward. It is worth

noting that the in this modest Reynolds number regime the
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Shear instability in cold water 5

FIG. 2. Slice of the temperature field at τ = (a) 7.81, (b) 11.72,(c)

15.62, (d) 19.53.

FIG. 3. Slices of the temperature field at τ = 19.53 (a) x−z (b),(c),(d)

y-z plane at the blue dashed lines indicated on panel (a). All panels

use the color range indicated by the colorbar for panel (a).

total kinetic energy decays throughout the simulation, though

the rate of decay clearly increases as three-dimensionalization

sets in. Panel (b) offers a different perspective using the to-

tal enstrophy (red) and the enstrophy based on the y compo-

nent of vorticity only (orange). It can be seen that during the

three-dimensionalization the enstrophy grows by over 100%

of its initial value, peaking at around τ = 19.53 and decay-

ing thereafter. The in–plane component of enstrophy has a

much smaller increase over this period, implying that three-

dimensional motions, and their spatial gradients, are essential

over this time period.

The state of the temperature field during the full three-

dimensionalized period is shown in Figure 5. The left col-

umn shows a slice at y = 0.5, while the right column shows

the spanwise standard deviation. At τ = 19.53, the peak of

KE3D we see that the temperature field has a prominent vortex

FIG. 4. (a) Total KE (black) and total KE3D (red) scaled by the max-

imum of the total KE versus time. (b) Total enstrophy (green) and

total ω2
y /2 (orange) scaled by the maximum of the total enstrophy

versus time.

FIG. 5. Left column: slices of the temperature at y = 0.074, Right

column: standard deviation of the temperature field. (a),(b) τ =
19.53, (c),(d) τ = 23.43, (e),(f) τ = 27.34. (a,c,e) have been scaled to

lie on [−1,0] as in Figure 1, (b,d,f) have been scaled to lie on [0,1].
All panels thus show the geometric distribution.

at the center of the domain. This vortex has not fully three-

dimensionalized since the standard deviation field in panel (b)

is dominated by horizontal layers near the bottom and top of

the domain. As the fluid evolution proceeds, the horizontal

layer of strong standard deviation near the bottom decays,

while the layer near the top is marked by multiple small vor-

tices. For late times the standard deviation is markedly de-

creased and near the top of the domain a black region of nearly

homogeneous fluid is observed.

Despite the low Atwood number, buoyancy effects and the

nonlinearity of the equation of state do modify the observed

state19. Figure 6 shows a slice of the temperature (a) and den-

sity fields (b). It can be seen that the nonlinearity of the equa-

tion of state manifests by decreasing the strength of the gra-

dients in the broad central region (i.e. panel (b) is dominated

by orange-red whereas panel (a) is not dominated by specific

colors).

Smyth and colleagues20 have argued that on large scale (e.g.
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Shear instability in cold water 6

FIG. 6. Slice of the temperature (a) and excess density (b) fields at

τ = 19.53 and y = 0.074 showing the importance of the nonlinear

equation of state.

FIG. 7. Plots of the gradient Richardson number based on the hori-

zontally averaged density and streamwise velocity profiles. The criti-

cal value of Ri = 0.25 is indicated by a red vertical line and the initial

Ri versus z profile is shown in black. (a) τ = 19.52 s, (b) τ = 23.43,

(c) τ = 27.34.

the Equatorial Undercurrent) stratified shear flows naturally

evolve toward a state of marginal stability marked by a vertical

profile of gradient Richardson number clustered around the

critical value of Ri = 0.25. For strongly-stratified shear flows,

Salehipour et al.29 attribute marginal instability to the Holm-

boe wave instability, since Kelvin-Helmholtz overturns result

in mixing too vigorous to remain marginally unstable. While

Ri< 0.25 is a necessary, but not sufficient, condition for linear

instability, we wanted to see to what extent our flow tended to-

ward marginal instability. Figure 7 shows the profiles of the

gradient Richardson number as a function of z at τ = 19.53,

23.43 and 27.34 (blue curves). The fraction of the water col-

umn for which Ri < 0.25 is (0.72,0.47,0.34) for the three

times shown. The initial Ri profile is shown as a black curve in

each panel. The critical value of Ri= 0.25 is indicated by a red

curve. It can be seen that a small region of marginal stability

is evident between z = 0.3 and 0.6 by τ = 23.43. The region

of marginal stability expands to 0.1 < z < 0.65 by τ = 27.34.

Thus even in this modest energy, extremely low Atwood num-

ber state the flow does reach a partial marginally stable state,

produced by Kelvin-Helmholtz overturning. However, the re-

gion near the top boundary, which is largely unmixed (as al-

ready noted by Hanson et al.14) never reaches a marginal state.

B. Coherent Structures

The derived Q field is often used to identify coherent struc-

tures (i.e. coherent vortices) in transitional and turbulent

flows. Figure 8 shows two perspectives on these coherent

structures at τ = 19.53 (panels a,b) and 27.34 (panels c,d).

It can be seen that at τ = 19.53 the Q field is quite busy

with a single spanwise oriented region (a vortex) between

x = 1.5 and 2.5 matching that highlighted in figure 6 (panel

a). Streamwise–oriented isoregions wrap around the span-

wise oriented region. At the later time, the regions marked

as “coherent" vortices by the Q field are much thinner, and are

almost exclusively (apart from the feature near x = 4) stream-

wise oriented. Coherent vortex structures appear to be prefer-

entially found near the boundary of the unmixed fluid found

near the upper boundary.

Since Q is an abstract quantity, we examined distribu-

tions of the physics–grounded viscous dissipation and the

vortex stretching and tilting term using threshold-based co-

occurrence of variables (e.g.30). Figure 9 shows shaded

slices of the temperature field at τ = 19.53 (left hand panels

(a,b,c,d)) and 27.34 (right hand panels (e,f,g,h)). Superim-

posed on the plots are regions greater than 15% of the maxi-

mum value of viscous dissipation in magenta, and the vortex

stretching and tilting term in blue. Regions with both quanti-

ties above their respective thresholds are shaded in green. At

the earlier time (left), the coherent vortex near x = 2 domi-

nates some but not all slices. The later time, like the Q field

in Figure 8, highlighted regions show features dominated by

thin streamwise streaks. This indicates that general conclu-

sions based on Q carry over to the viscous dissipation and

vortex stretching field. It is however interesting that in all of

our panels there are clear regions in which only one of viscous

dissipation or vortex stretching takes on high values.

To identify whether the properties of the Q − R distribu-

tion agree with the actual observations of vortex stretching,

the quantity ES defined by equation (22), is explored using

the well-known Q−R “ice cream cone" plots in Figures 10

and 11. The two figures consist of a shaded plot of the log10

of the probability density in Q−R space, with colours satu-

rated on [−7,−4]. The topological transition, D = 0, curve

is superimposed in black and the quadrants of Q− R space

are denoted by dashed yellow lines. The 50% largest values

of the enstrophy stretching term are shown as white points

(top 10% further accentuated as green crosses), which theory

would suggest should fall in the first and third quadrants above

the topological transition curve. The 50% most negative val-
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Shear instability in cold water 7

FIG. 8. Isosurfaces of the Q = 0.025 field indicating regions of coherent vortices. (a), (b) τ = 19.53 from two different view points, (c),(d)

τ = 27.34 from two different view points.

ues of the enstrophy stretching term (i.e. vortex compression)

are shown as magenta points, which theory suggests should

fall in the second and fourth quadrants above the topological

transition curve.

At τ = 19.53 and 27.34 the maximum of vortex compres-

sion (the most negative value of ES) is 24% and 17% of the

maximum vortex stretching (the largest positive value of ES).

Moreover the the maximum vortex stretching (the largest pos-

itive value of ES) decreases by a factor of ten from τ = 19.53

to 27.34. From Figures 10 and 11, it is observed that at

both τ = 19.53 and 27.34 the vortex compression follows the

rule established for isotropic, homogeneous turbulence26. At

τ = 27.34 the extreme vortex stretching (green crosses) also

falls in the correct quadrant. The flow yields more vortex

stretching than compression, and a surprisingly high amount

of this is associated with points in the second and third quad-

rants, and indeed even below the topological transition line.

This effect is especially pronounced at τ = 19.53 when the

flow is most energetic, but still preserves some coherent vor-

tical features (e.g. the vortex in the center of both panels of

Figure 6).

C. Turbulence Decay and Maintenance

Table II compares the metrics of the vortex stretching (ES)

and baroclinic production (EB) terms in the enstrophy equa-

tion over the mature 3D portion of the simulation. It can

be seen that both in terms of maximum and mean the vortex

stretching term dominates the baroclinic production. This is

especially true for the peak KE3D period near τ = 20. At late

times, the ratios are more comparable, but by τ = 27.34 the

vortex stretching term has dropped in magnitude by a factor

of ten.

Throughout the fully three-dimensionalized period, ES and

EB are positively correlated. However, the correlation never

surpasses 0.25.

τ
max |ES|
max |EB|

mean |ES|
mean |EB| correlation

19.53 9.49 7.62 0.21

23.44 6.85 3.76 0.16

27.34 5.69 2.27 0.24

TABLE II. Enstrophy budget terms metric comparison

The ability of the flow to maintain its fully three–

dimensionalized state for late times is largely controlled by

the enstrophy stretching term ES defined in equation (22).

Because the flow is fully three-dimensionalized, patches of

enstrophy occur throughout the computational domain. Fig-

ure 12 shows two isosurface of the enstrophy field. Since en-

strophy is found to have sparsely distributed, strong peaks,

isosurfaces at 10% and 20% of the maximum enstrophy are
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Shear instability in cold water 8

FIG. 9. Shaded plots of a slice of the temperature at τ = 19.53 (a-d) and τ = 27.34 (e-h). (a),(e) y/Ly = 0.125,(b),(f) y/Ly = 0.375, (c),(g)

y/Ly = 0.625, (d),(h) y/Ly = 0.875. Superimposed on the plots are regions greater than 15% of the maximum value of viscous dissipation in

magenta, and the vortex stretching and tilting term in blue. Regions with both quantities above their respective thresholds are shaded in green.

shown in panels (a) and (b), respectively. The isosurfaces are

shaded by the enstrophy stretching term scaled by its absolute

maximum value. Panel (a) shows that at 10% of the maximum

enstrophy is fairly broadly distributed, however since most of

the shading is dark green the majority of these isosurfaces do

not experience strong stretching (regions in yellow experience

weak vortex stretching). This can be contrasted with panel (b),

in which the far more localized 20% of the maximum enstro-

phy iosurfaces are shown. It can be seen that the regions of

strong enstrophy are aligned into streamwise streaks that are

found below the interface between the unmixed near upper

surface fluid and the main, mixed water column. The shading

suggests that these high enstrophy regions experience strong

stretching, implying that some amount of self–induced main-

tenance of the three–dimensional state is occurring.

The enstrophy tells a significant amount of the story of how

the flow evolves, though it is important to note that the dis-

tribution of viscous dissipation matters as well. In order to

explore this aspect of the flow, Figure 13 shows an isosurface

of viscous dissipation at 20% of the maximum value of vis-

cous dissipation. The isosurface clearly tracks the deformed

shear layer, with additional patches at the two ends of the tank.

The shading is once again the strength of the vortex stretching

term. This shows that the deformed shear layer throughout

the central portion of the domain experiences only weak vor-

tex stretching, and hence slowly decays. However, some of

the smaller patches of high viscous dissipation do experience

strong vortex stretching. Future work should explore whether

this local combination of enhanced vorticity and viscous dis-

sipation significantly effects long time evolution.

IV. DISCUSSION, CONCLUSIONS AND FUTURE WORK

The results reported above suggest that despite the mod-

erate Reynolds number and very low Atwood number, shear

instability in the cold water regime achieves a state that is re-

markably well-characterized by tools developed for fully de-
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Shear instability in cold water 9

FIG. 10. The shaded log10 of the probability density in Q-R space, with colours saturated on [−7,−4] for τ = 19.53. The topological transition,

D = 0, curve is superimposed in black. The 50% largest values of the enstrophy stretching term are shown as white points (top 10% further

accentuated as green crosses). The 50% most negative values of the enstrophy stretching term (i.e. vortex compression) are shown as magenta

points. The quadrants of Q-R space are denoted by dashed yellow lines.

veloped turbulence. In particular, the characterization in Q-

R space proves quite accurate for both vortex stretching and

compression.

The late time state is characterized by an active region be-

neath a relatively quiet region with little mixing of the temper-

ature field. The enstrophy field experiences localized stretch-

ing that acts to preserve three-dimensional motions. These

coincide with pre-existing regions of enstrophy, and thus the

field is unable to fully break down the temperature stratifica-

tion that develops near the upper boundary.

Both the coherent vortices (defined via the Q field) and the

viscous dissipation field are marked by streamwise “worms".

In the case of the viscous dissipation these are associated with

a deformed shear layer (from x = 1 to x = 3.5 in Figure 13).

Other less-coherent regions are observed as well (e.g., be-

tween x = 3.5 and x = 4 in the same figure). The large stream-

wise extent of the high dissipation regions prevents the devel-

opment of an inertial subrange.

It is worth asking what role the weak buoyancy plays in

the above described dynamics. To explore this a simulation

was spawned from the base simulation at τ = 18.75. For the

new simulation g = 0 so that the density is a passive tracer,

and buoyancy effects are not observed. Figure 14 shows the

distribution of viscous dissipation, coloured by the enstrophy

stretching and compression term, using the same parameters

as Figure 13. It is immediately apparent that there is far less

localization of the dissipation to the lower portion of the do-

main. The dissipation is more patchy, as opposed to a per-

turbed shear layer, and more regions of vortex stretching are

evident

In order to get a sense of how the fully three-

dimensionalized state is reached in the no buoyancy simu-

lation, Figure 15 shows the evolution of temperature and its

spanwise standard deviation, using the same convention as

Figure 5 for the base case. It can be seen that at τ = 19.53 the

no buoyancy simulation is still quite similar to the base case.
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Shear instability in cold water 10

FIG. 11. Q-R Plot as in figure 10, but for τ = 27.34. Note the change in axes extents

FIG. 12. (a) Isosurface of 10% of the maximum value of the enstrophy shaded by the enstrophy stretching term scaled by its maximum

absolute value at τ = 27.34. (b) Isosurface of 20% of the maximum value of the enstrophy shaded by the enstrophy stretching term scaled by

its maximum absolute value at τ = 27.34.
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Shear instability in cold water 11

FIG. 13. Isosurface of 20% of the maximum value of the viscous dissipation shaded by the enstrophy stretching term scaled by its maximum

absolute value at τ = 27.34.

However by the τ = 23.43 the zero buoyancy case has far

larger spanwise standard deviations, and the layer of fluid near

the upper boundary is at least partially mixed. By τ = 27.34

this upper layer is completely mixed, in sharp contrast to the

base case. Thus despite the fully three-dimensional nature of

flow, and the inherently small density differences in the cold-

water regime, buoyancy is essential to the quasi-turbulent dy-

namics.

An interesting question for future work is whether further

organization of this mature state is possible when the unstable

shear layer develops as part of a naturally occurring flow (e.g.

an under-ice river outflow where the proximity of the inter-

face to the boundary could influence the shear instability31,32).

However, to address this question would require the con-

struction of a parametrization scheme based on the state de-

scribed in this work, as opposed to off-the-shelf eddy viscosity

schemes.

A different avenue for future work, more focused on ex-

isting shear instability literature, would focus on how robust

the cold-water results are for a more strongly stratified, faster

moving fluid.
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